dataframe - Subsetting a data frame with dates as `str` and nan values in Python -
i have data frame, extracted .csv file using data = pandas.read_csv
one of columns of data frame dates, such '14/09/2015', type of data str.
i need create subset, use: newdataframe = dataframe['datescolumn'][dataframe['datescolumn']==desired date]
but have 2 main problems:
- since dates strings, have tried use slice [-1]. error:
keyerror : -1l
i tried use code select 2014:
newdataframe = dataframe['datescolumn'][dataframe['datescolumn'][-1]==4]
- i have empty fields have been imported nan values. if try perform
forloop transform data, error:
typeerror: 'float' object has no attribute '__getitem__'
q: how can subset data (or clean it) year?
many thanks.
for nan values can use fillna().
# fill nans zeros nonans = withnans.fillna(0) and date issue, instead of handling date strings should let existing libraries handle them you. in case read_csv() function can you. see documentation here.
here's little example:
csv file:
1,14/09/2016,dataa 1,14/09/2015,dataa 2,14/10/2014,dataa2 code:
import pandas pd datetime import date df = pd.read_csv("test.csv", header=none, parse_dates=[1]) df[df[1] > date.today()] prints only
0 1 2 0 1 2016-09-14 dataa
Comments
Post a Comment